

Expert Meeting Denver, CO

May 22, 2024

Co-Operating Agents:

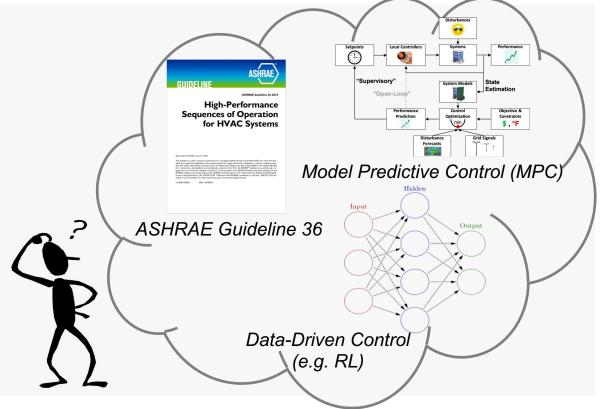
David Blum

Computational Research Scientist/Engineer Building Technology and Urban Systems Division Lawrence Berkeley National Laboratory (LBNL) Email: <u>dhblum@lbl.gov</u> Lieve Helsen Professor Department of Mechanical Engineering KU Leuven Email: <u>lieve.helsen@kuleuven.be</u>

Thank you to IBPSA USA for room availability

- BOPTEST
 - Motivation and Concept
 - Technical Approach and Example Usage
- Project 2
 - Objectives, Tasks, and Registration Stats
 - Ongoing Efforts

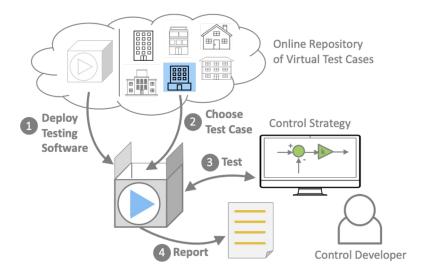
Motivation

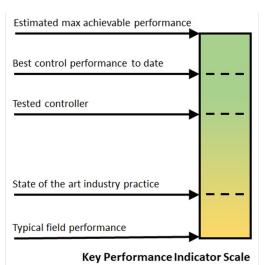

Many new and advanced control strategies hold promise ...

But they all have different requirements for:

- Data
- Modeling
- Computation
- Expertise

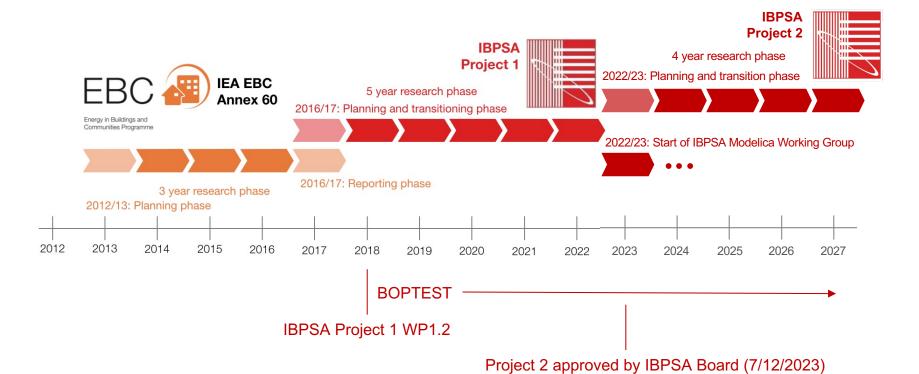
How do they <u>compare</u> in terms of:


- Providing comfort
- Energy management
- Implementation cost
- Reliability



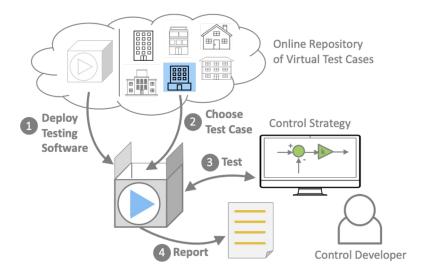
Concept

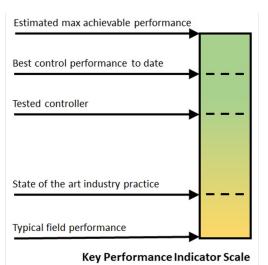
Building Optimization Testing Framework (BOPTEST) A Simulation-Based Controls Testing and Benchmarking Environment


- · Deployable software runtime environment: rapidly, repeatably, and at scale
- Control-interactive high-fidelity emulator models with defined boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

History

• Extending 10 years of international collaboration on Modelica and FMI-based modeling for building and urban energy system design and operation



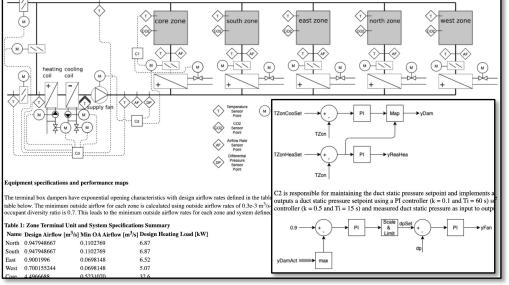

Community Development:

Institution	Team
Arup, Australia, USA, UK	Haico Schepers, Raffe Brennan, Robert Knight
Builtwins, Belgium	Filip Jorissen, Lieve Helsen
dnergy, Belgium	Roel De Coninck, Bart Merema, Iago Cupeiro,
Devetry, USA	Chris Berger, Philip Gonzalez, Amit Kapoor
ENGIE, France	Valentin Gavan
ETH Zurich, Switzerland	Esther Borkowski, Felix Bunning
Hong Kong University of Science and Technology, Hong Kong	Zhe Wang, Wanfu Zheng
Johnson Controls, USA	Erik Paulson (formerly)
KU Leuven, Belgium	Lieve Helsen
Lawrence Berkeley National Laboratory, USA	David Blum, Michael Wetter, Ettore Zanetti
National Renewable Energy Laboratory, USA	Kyle Benne, Nicholas Long, Marjorie Schott, Tim Coleman, Jermy Thomas, Dave Biagioni, Yanfei Li
National University Singapore, Singapore	Sicheng (James) Zhan
Oak Ridge National Laboratory, USA	Yeonjin Bae, Piljae Im, Sen Huang
Pacific Northwest National Laboratory, USA	Yan Chen, Draguna Vrabie, Xing Lu, Jan Drgona, Robert Lutes
Politecnico di Torino, Italy	Davide Fop, Alfonso Capozzoli
Pure Control, France	Gauthier-Clerc Francois
R2M Solutions, Spain	Laura Zabala, Jesus Febres
RWTH Aachen, Germany	Laura Maier
SINTEF, Norway	Harald Walnum
Southern Denmark University, Denmark	Krzysztof Arendt, Christian Veje, Tao Yang
Technical University of Denmark, Denmark	Peder Bacher, Konstantin Filonenko
WEDOCO, Belgium	Javier Arroyo

Building Optimization Testing Framework (BOPTEST) A Simulation-Based Controls Testing and Benchmarking Environment


- · Deployable software runtime environment: rapidly, repeatably, and at scale
- Control-interactive high-fidelity emulator models with defined boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

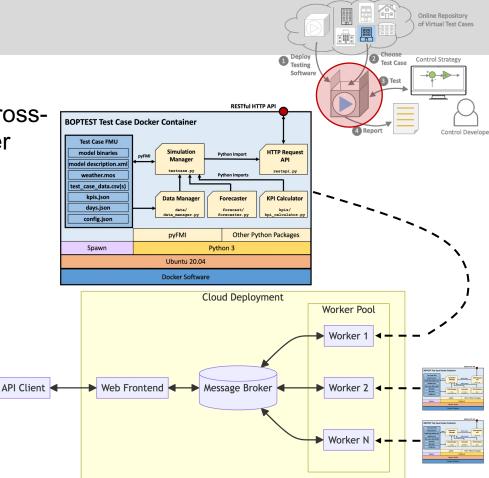
Building Emulators ("Test Cases")


- High-fidelity models with embedded baseline control in Modelica, Spawn, and CDL, exported as FMU
- Overwritable supervisory or localloop control
- All boundary condition data defined (e.g. weather, schedules, electricity prices, carbon emission factors)
- Controlled exposure of sensor and control points
- Documentation and peer review to ensure quality and usability

HVAC System Design

Primary and secondary system designs

The HVAC system is a multi-zone single-duct Variable Air Volume (VAV) system with pressure-independent terminal boxes with reheat. A schematic of the system is shown in the figure below. The cooling and heating coils are water-based served by an air-cooled chiller and air-to-water heat pump respectively. The available sensor and control points, marked on the figure below and described in more detail in the Section Model IO's, are those specified as required by ASHRAE Guideline 36 2018 Section 4 List of Hardwired Points, specifically Table 4.2 VAV Terminal Unit with Reheat and Table 4.6 Multiplie-Zone VAV Air Handling Unit, as well as some that are specified as application specific or optional.

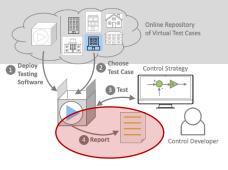


Example test case documentation snippets

Run-Time Environment

- Rapid, repeatable deployment locally crossplatform or as web-service using Docker
- "Native" HTTP RESTful API for test management and controller interaction

API Endpoint	Description		
GET measurements	Receive available measurement points		
GET inputs	Receive available input points		
PUT scenario	Set test scenario (time period, ele. price)		
PUT initialize	Initialize simulation		
PUT step	Set control step		
GET forecast	Receive forecasts		
POST advance	Advance simulation with control input		
PUT results	Receive historic point trajectory		
GET kpi	Receive KPI values		
POST submit	Submit results to online dashboard		
HTTP RESTful API Summary			



Web-Service deployment architecture based on version of Alfalfa Virtual Building Service at <u>https://github.com/NREL/boptest-service</u>

Evaluation Design

- Set of KPIs calculated by framework
- Predefined test scenarios (e.g. time period and electricity prices
- Online dashboard for collecting, viewing, and comparing KPI results (coming soon)

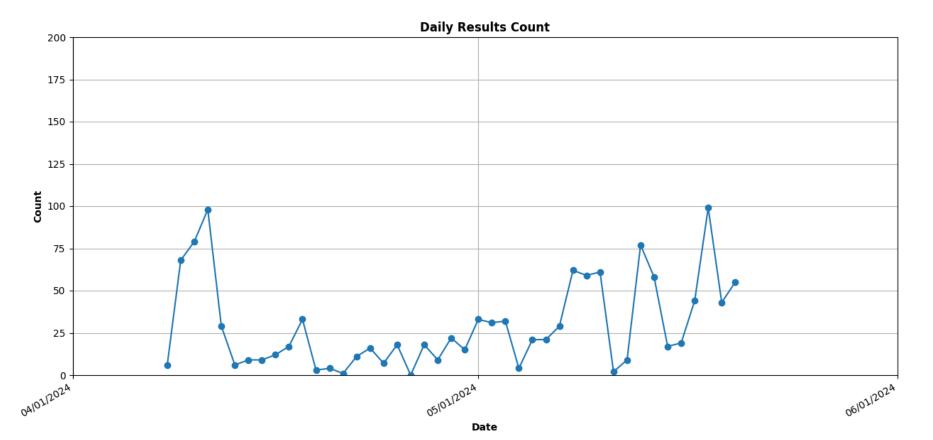
Description	Unit	≡	B PTEST	т			Shar	red Test Results				SIGN OL	UT DHBLUM
Energy Use	kWh / m ²		- Filter on Building	na Type									
Energy Cost	\$ / m ²	1 ~		Hydronic Heat F	Pump 🗸 🔤	CLEAR							2 Total Results
Emissions	KgCO2 / m ²] 	- Time Period	day		Electricity Price	•	Weather Forecast Uncertain	nty	C'		OMFORT	ENERGY
Thermal Discomfort	K.h / zone] ≎	reat_neat_	_uay				Deterministic	`	L			
IAQ Discomfort	ppm.h / zone		Building	Date	Total	Thermal	Indoor Air Quality	Total Operations	Total CO2	Peak Electrical	Peak Gas	Peak District	Computational
Peak Demand	kW / m ²		Туре	Run	Energy [kWh/m^2]	Discomfort [Kh/zone]	Discomfort	Cost [\$ or	emissions ↑ [kgCO2/m^2]	Demand	Demand	Heating Demand	Time Ratio [-]
Computational Time Ratio	[-]						[ppmh/zone]] Euro/m^2]		[kW/m2]	[kW/m2]	[kW/m2]	
KPIs calculated by I	BOPTEST		BESTEST Hydronic Heat Pump	5/21/2024, 9:30:58 PM	4.1246	89.0923	0.0000	1.05	0.6888	0.0181	N/A	N/A	0.0000
			BESTEST Hydronic Heat Pump	5/21/2024, 9:31:57 PM	4.2998	123.5776	0.0000	1.10	0.7181	0.0217	N/A	N/A	0.0000

Online dashboard

Framework Status

- Home Page: <u>https://boptest.net/</u>
- BOPTEST v0.6.0 (April) for core framework software and test cases:
 - Repo: <u>https://ibpsa.github.io/project1-boptest/</u>
 - v0.5.0 Downloads (Oct 23 Mar 24): 147
 - GitHub: 99 Stars, 64 Forks
- BOPTEST-Service v0.4.0 (April) supporting BOPTEST v0.6.0:
 - Public API: https://api.boptest.net
 - Repo: <u>https://github.com/NREL/boptest-service</u>
- Gym environment interface with support for v0.6.0 (May): <u>https://github.com/ibpsa/project1-boptest-gym</u>
- Updated Online Results Dashboard coming soon to <u>https://dashboard.boptest.net/</u>
- Join the google group: <u>https://groups.google.com/g/ibpsa-boptest</u>

Hydronic	Air
Single zone + Radiator	Single zone + FCU
"bestest_hydronic"	"bestest_air"
Single zone + Floor heat and heat pump "bestest_hydronic_heat_pump"	Single zone + RTU with DX, gas furnace
2 zone + Floor heat and heat pump "twozone_apartment_hydronic"	2 zone + FCUs + AHUs with gas boiler, chiller <i>"multizone_commercial_simple_hydronic"</i>
Single zone class + Radiator, AHU, CO2 control <i>"singlezone_commercial_hydronic"</i>	5-Zone + 1 VAV AHU with reheat with chiller and heat pump "multizone_commercial_simple_air"
8-Zone + Radiators, boiler, and split cooling	10-zone + 1 VAV RTU with reheat, DX, electric heating
"multizone_residential_hydronic"	"flexible_research_platform"
	15-Zone + 3 VAV AHU with reheat, chiller, boiler
	"multizone_commercial_complex_air"

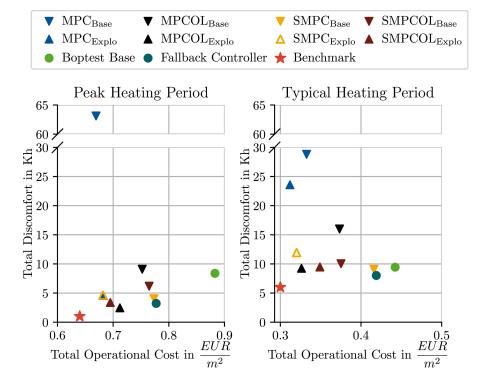

Available

Implemented, but not yet available

Test case development progress within IBPSA Project 2

Framework Usage

Public Web-Service Usage (number of results created per day)



Framework Usage

Recent Research Examples

- Safe operation of online learning data driven model predictive control of building energy systems (Stoffel et al. 2024: https://doi.org/10.1016/j.egyai.2023.100296)
- Simulation-based assessment of ASHRAE Guideline 36, considering energy performance, indoor air quality, and control stability (Faulkner et al. 2023: https://doi.org/10.1016/j.buildenv.2023.110371)
- Enabling portable demand flexibility control applications in virtual and real buildings (Pereira et al. 2024:

https://doi.org/10.1016/j.jobe.2024.108645)

"Fig. 8. Control performance results of the BOPTEST scenarios for the examined setups. The benchmark controller is a physics-based MPC from Arroyo et al. 2022 (<u>https://doi.org/10.3389/fbuil.2022.849754</u>) for comparison." (Under Creative Commons License From Stoffel et al. 2024 – link at left).

Framework Usage

Industry Examples

dnergy (Belgium), **Edo Energy** (USA) Maturing MPC control solutions before deployment

ARUP (Australia, USA, UK) Developing workflow to provide building owners comparative performance evaluations for advanced controls

EPA EnergyStar (USA) Evaluating Smart Thermostat performance Benne et al. 2024 "Simulation Driven Rating of Smart Thermostats", IBPSA USA SimBuild 2024

ADRENALINE (Led by Norway) Smart Building HVAC Control Challenge open competition https://adrenalin.energy/adrenalin-2023-smart-building-hvac-control-challenge

Prototyped workflow for thermostat benchmarking (Benne 2023 <u>https://www.energy.gov/sites/default/files/2023-05/bto-</u> peer-2023-32620-benchmarkingthermostats-nrel-benne.pdf)

Project 2 Objectives

- Continue open-source (BSD) development of BOPTEST software infrastructure, emulators, and related extensions to meet the growing needs of building and urban energy system controls development and evaluation worldwide.
- Use BOPTEST to evaluate and benchmark advanced control strategies.
- Build an international community around the advancement of controls in building and urban energy systems.

Project 2 Tasks and Leadership

Co-Operating Agents: David Blum, LBNL and Lieve Helsen, KU Leuven - EnergyVille

1. Task 1: Outreach and Community Building

Lead: Javier Arroyo, WEDOCO, Spain

Activities that encourage, facilitate, and disseminate BOPTEST usage, adoption, and feedback to development. Including workshops, tutorials, website maintenance, usage and case study collection.

2. Task 2: Methods and Infrastructure

Lead: David Blum, LBNL, USA

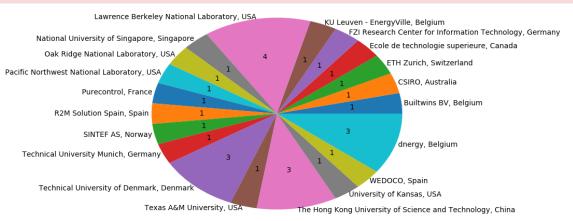
Development and maintenance of core software and closely related extensions. Including architecture, FMU simulation and data management, scenario definition, KPI calculation, forecast delivery, API, dashboard, web-service, and interfaces.

3. Task 3: Test Cases

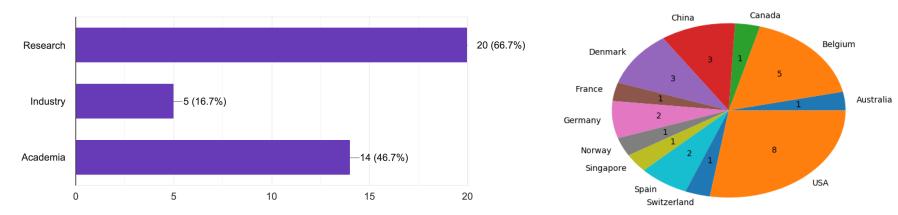
Lead: Ettore Zanetti, LBNL, USA

Development and maintenance of benchmark emulators, so-called "test cases." Continue to utilize the Modelica language and Functional Mockup Interface (FMI) standard, particularly open-source libraries that extend from Modelica IBPSA Library.

4. Task 4: Controller Testing


Co-leads: Esther Borkowski, ETH Zurich, Switzerland & Zhe Wang, HKUST, Hong Kong

Testing, benchmarking, and comparing control strategies by Project participants.


Project 2 Participation

As of May 20, 2024: (registered using google form)

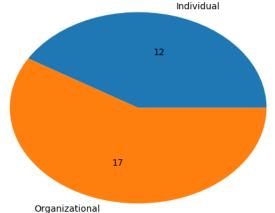
- 29 Registrants
- 20 Organizations
- 12 Countries

Breakdown by Organization

Breakdown by Organization Type

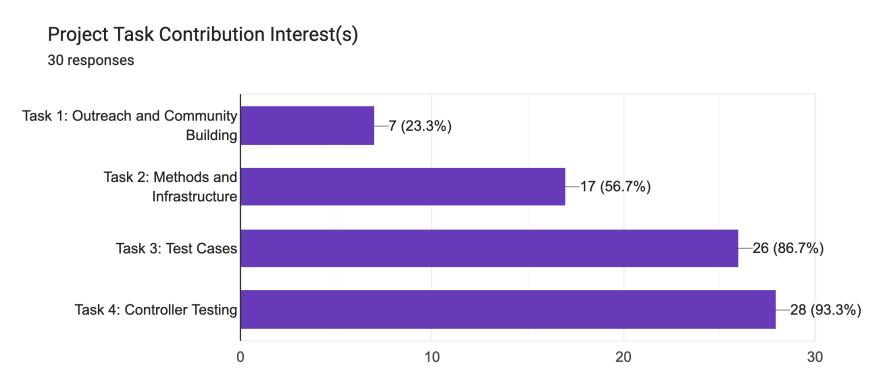
Breakdown by Country

Project 2 Participation


As of May 20, 2024: (registered using google form)

• 29 Registrants

Organizational: Organizations that commit to contribute a minimum of 6 months FTE per project year using their own funding, contribute to 5-10 virtual meetings annually, and attend two-day semi-annual expert meetings using their own funding.


Individual: Contributors that participate as is custom in other opensource projects without a predetermined level of commitment.

Sponsor: Participants or organizations that fund the Project with cash contribution at US-\$ 5,000 per year. Go to items such as expenses for in-person expert meetings (i.e. rooms, food, A/V, and student travel scholarship) and CI testing.

Project 2 Contribution Interest

As of May 20, 2024: (registered using google form)

Task 1: Outreach and Community Building

- Workshop in May at Seville University to teach BOPTEST and BOPTEST-Gym (WEDOCO)
- Climate Change AI Summer School June-August will include BOPTEST and BOPTEST-Gym tutorials (WEDOCO)
- Presentations at IBPSA USA SimBuild 2024 (LBNL, PNNL, NREL)
- Possibility of contest run by Project 2

Task 2: Methods and Infrastructure

- Weather forecast uncertainty (R2M, HKUST)
- Repository refactor and Alfalfa alignment (LBNL, NREL)
- Online dashboard (NREL)
- DOPTEST (KU Leuven, LBNL)
- OpenModelica test case compilation testing (LBNL)
- Semantic models (LBNL)
- New KPI Actuator Travel (PNNL, TUM, LBNL)

Task 3: Test Cases

- New: Multizone Office Hydronic Simple (dnergy)
- New: Multizone Office Air Complex (PNNL)
- New: Flexible Research Platform (ORNL)
- New: DOPTEST (KU Leuven)
- Update: Two Zone Apartment Hydronic (LBNL, RWTH Aachen)
- Update: Single Zone Commercial Hydronic (SINTEF)
- New emulator proposals (DTU, ÉTS)
- Revision to Peer Review document and process (LBNL)

Task 4: Controller Testing

- Proposal to organize workshops and seminars for BOPTEST users to share usage and insights on controller performance (ETH, HKUST)
- Benchmark performance of ASHRAE Guideline 36 and MPC on Multizone Office Air Complex test case (PNNL)

Thank you!

BOPTEST Home Page: https://boptest.net

IBPSA Project 2: https://ibpsa.github.io/project1-boptest/ibpsa/index.html

Join the mailing list: <u>https://groups.google.com/g/ibpsa-boptest</u>

David Blum

Computational Research Scientist/Engineer Building Technology and Urban Systems Division Lawrence Berkeley National Laboratory (LBNL) Email: <u>dhblum@lbl.gov</u>