

Weather forecast uncertainty

Laura Zabala Urrutia, Jesus Febres R2M Solution Spain

Zhe (Walter) Wang, Wanfu Zheng Hong Kong University of Science and Technology

Objective

Develop a weather forecast uncertainty emulator to be implemented as part of BOPTEST.

BOPTEST test cases \rightarrow real weather data (TMY data) \rightarrow add an error to emulate real forecasts for weather variables.

Focus: outdoor temperature and solar radiation.

Weather dataset analysis

- Berkeley (USA) from LBNL. Predictions updated every hour, and 48h forecast. Forecast data is obtained from the DarkSky API. The historic data is collected from a weather station on LBNL's campus (MESOWEST STATION INTERFACE (utah.edu)).
- Oslo (Norway) provided by SINTEF. Predictions updated every hour, and 60h forecast. Data available at the site of Norwegian Meteorological Institute. Historic predictions: http://thredds.met.no/thredds/metno.html. Real measurements: Frost API (met.no).
- Leuven (Belgium) provided by KU Leuven. Predictions updated every 6 hours, and 48h predictions. Climatic data were collected at the Vliet Building in Leuven operated by the Building Physics Section of the KU Leuven. Forecasts purchased at OpenWeather service (https://openweathermap.org/).
- Berlin (Germany) provided by RWTH Aachen. Predictions updated every hour, and 48h predictions.
- **Milan (Italy)** provided by Politecnico de Milano. Predictions updated once a day, and 72h forecast. Provided by the regional office of weather data. Data for four different locations, and in some of them two different prediction models are used, so we have a total of 7 combinations.

Workflow: outdoor temperature

Workflow: solar radiation

Outdoor temperature error: histograms

SIMBUILD 2024 Denver, Colorado

The error in the temperature matches a **normal distribution**

Solar radiation error: histograms

Laplace distribution

SIMBUILD 2024 Denver, Colorado

The error in the solar radiation matches a

Temperature error model

The absolute error in the temperature i

$$e_k = X_k - \widetilde{X_k}$$

 X_k : historical data
 $\widetilde{X_k}$: prediction

• The initial error is defined by a normal distribution

$$e_1 = F_0 + K_0 w_i$$

SIMBUILD 2024 Denver, Colorado

S		Proposed model
	Model	$e_{k+1} = Fe_k + Kw_k$
	Parameters	F K
	Variance	$w_k \sim N(0,1)$

k

Solar radiation error model

The absolute error in the temperature i

$$e_k = X_k - \widetilde{X_k}$$

 X_k : historical data
 $\widetilde{X_k}$: prediction

• The initial error is defined by a Laplace distribution

$$e_1 = F_0 + K_0 w_{\mu}$$

S		Proposed model
	Model	$e_{k+1} = Fe_k + Kw_k$
	Parameters	F K
	Variance	$w_k \sim \mathcal{L}(0,1)$

Validation of the models

Comparison between the synthetic generated forecast and the historic forecasts based on statistical parameters.

Uncertainty scenarios definition

4 scenarios of uncertainty are considered for the test cases:

- No uncertainty
- Low uncertainty
- Medium uncertainty
- High uncertainty

The scenarios' parameters defined based on available data.

Integration into BOPTEST

Review process ongoing.

Questions:

• Solar radiation is limited (not just to avoid negative values) \rightarrow should we include something similar for temperatura?

Next steps

Other uncertainty sources will be considered (occupancy, measurements)

Validate with new data \rightarrow any source?

Suggestions for improvement, new functionalities

Contact Laura Zabala Urrutia

laura.zabala@r2msolution.com