

Prototyping the **DOPTEST** Framework for Simulation-Based Testing of System Integration Strategies in Districts

IBPSA Project 2: BOPTEST Expert Meeting October 12th, 2023 Javier Arroyo

Outline

- Motivation
- The DOPTEST framework
- Relation to the TECHPED project
- A simulation example
- Conclusion
- Outlook

Motivation

Motivation

- Let's be **predictive**
 - To enhance energy efficiency in buildings
- Let's get connected
 - To enable demand response in buildings

http://www.justinbrownphotography.com/

Motivation

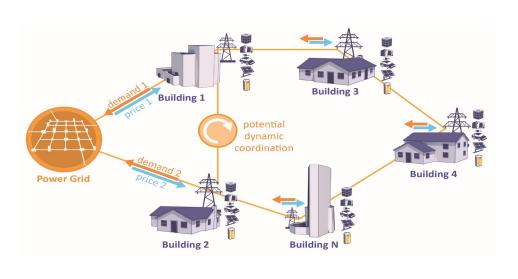
System integration deals with:

- Different energy vectors
- Energy agents with competing objectives

*Note!

An energy agent any entity able to exchange energy with its surroundings and that is assigned a bill for the exchange.

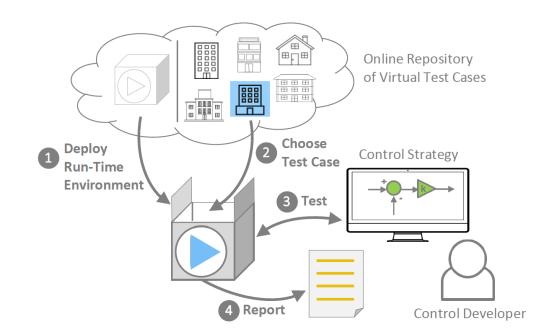
There is no unified framework for evaluating system integration strategies in districts


€

DOPTEST – Previous work

CityLearn: OpenAI-Gym simulation-based framework for testing RL algorithms for DR at an urban scale

✓ District simulation and benchmarking


- ✓ Gym interface
- \checkmark Established contest
- X Not detailed emulators
- X Not generic interface
- X Linear electricity price model

KU LEUVEN

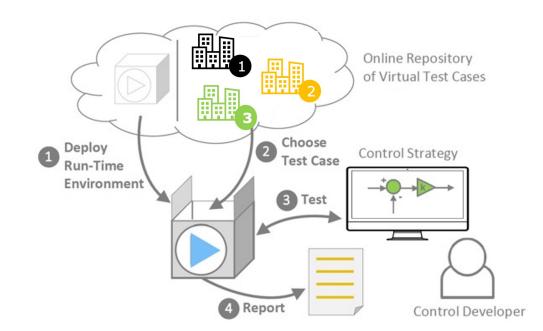
https://www.citylearn.net/

DOPTEST

BOPTEST = Building optimization testing framework

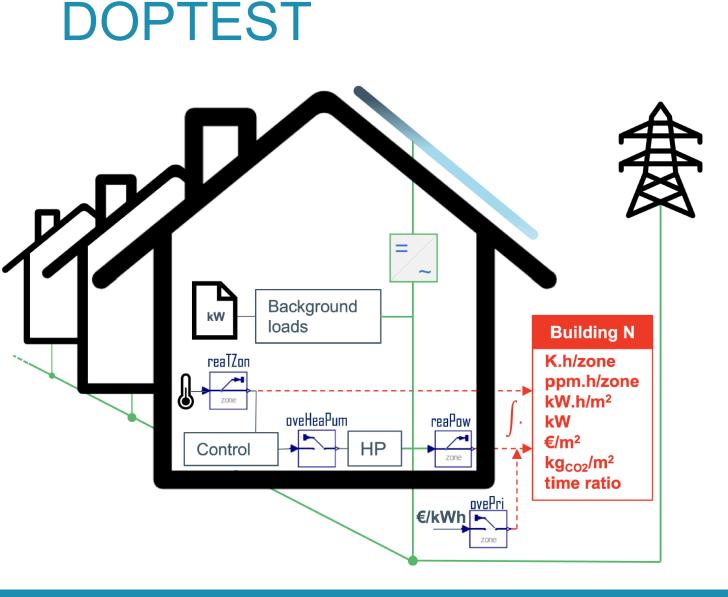
Main stakeholders :

- Building owners
- Facility managers


https://github.com/ibpsa/project1-boptest

D. Blum et al. Journal of Building Performance Simulation, 14(5), 586-610

From **BOPTEST** to → **DOPTEST** = District optimization testing framework


Main stakeholders :

- Aggregators
- Grid operators

KU LEUVEN

Modified from D. Blum et al. Journal of Building Performance Simulation, 14(5), 586-610

- **Goal**: Evaluation and benchmarking of system integration strategies in districts through simulation
- Requirements:
- 1. Widely used technologies & RWs
- 2. Substations to wider grids
- 3. Coherent weather & emissions & pricing
- 4. Testing scenarios & KPIs
- 5. Control & pricing signals
- 6. Price maker (inside) vs. Price taker (outside)

• Overview of selected core Key Performance Indicators (KPIs):

We want to obtain the least possible ...

Thermal discomfort

Indoor air quality discomfort

While minimizing ...

Energy use

Peak power

 CO_2 emissions

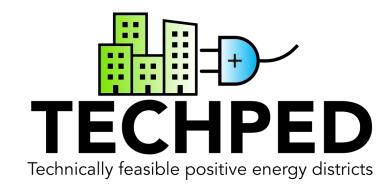
Operational cost

And keeping an eye on ...

Computational time ratio

$$\kappa_{prof} = \frac{\frac{\sum_{a \in \mathcal{A}} \sum_{v \in \mathcal{V}_a} \int_{t_s}^{t_f} \lambda'_{av}(t) P_{av}(t) dt}{A} - \kappa_{cost}}{\kappa_{cost}} \cdot 100$$

The TECHPED Project



TECHPED Project

- **TECHPED** = Technically feasible positive energy districts
- A fundamental research project managed by KU Leuven and EnergyVille
- Runs for 4 years (Oct 2021 Oct 2025)
- Project proposal, in a nutshell:

How to develop scientifically-backed and technically feasible "Positive Energy Districts" within cities?

TECHPED Project

Prof. Johan Driessen Electrical systems

Prof. Lieve Helsen Thermal systems

Prof. Geert Deconinck Smart grids

Prof. Erik Delarue Energy markets

Lucas Verleyen Positive energy districts

Cas Bex Smart grids

Yucun Lu Energy markets

Javier Arroyo

Joris Deportere Data science and AI

Louis Hermans Multi-energy vector districts

Attila Bálint Data science and information technology

TECHPED Project – District layouts

Technology	Acronym			Individual technologies only					Individual or collective technologies				Internal	Internal					
Electric Boiler	EBoi						er	<u> </u>	• 	I === .				-	-	electricity	thermal		
Gas Boiler	GBoi			AAHP	FH	GBoi	TES	EV	PV	EBoi	ASHP	GSHP	STC	STES	BES market	market	network		
Air-source heat pump (air-to-water HP)	ASHP		T 1	T	т	т										N-	No		
Ground-source heat pump (water-to-water HP)	GSHP	Base cases	es	L1	1	1	1										No	NO	
Air-to-air HP	AAHP		L2	I	I	Ι	I						Ι			No	No		
Floor heating	FH			-	-	-	-						-						
Thermal energy storage	TES	Study individual electrific.	L3	I	Ι		Ι	Ι	Ι	Ι			Ι		Ι	No	No		
Seasonal thermal energy storage	STES		TA	l .	T	+	T	T	Ŧ		-		T		T	NT	N T		
Solar thermal collectors	STC		L4	1	1		1		1		1					No	No		
Solar photovoltaic panels	PV		L5	T	T		T	T	T			T	T		T	No	No		
Battery Energy Storage	BES		13	1	1		1	I	1			1	1		1	110	140		
Electric Vehicle EV			L6	Ι	Ι		Ι	Ι	Ι	Ι			Ι		Ι	Yes	No		
Table 1 - Selection of technologies and associated ac	acronyms.		L7	T	I		I	T	T		T		T		T	Yes	No		
Other specifications	Acronym	Study internal market	Study inter mark	udy ark		-	-		-	-	-		-		-		-		
Layout	L			L8	I	Ι		Ι	Ι	Ι			Ι	I		I	Yes	No	
Individual component	1				-		-	-	-	-					~				
Collective component	С		L9	1	1		1		1	1					C	Yes	No		
Table 2 - Other specifications and their acronyr	ws. [rical	Study collective electrical resources	L10	Ι	Ι		Ι	Ι	Ι		Ι		Ι		С	Yes	No		
		Stuc collc elect reso	L11	Ι	Ι		Ι	Ι	Ι			Ι	Ι		С	Yes	No		
			L12	Ι	Ι		Ι	Ι	Ι			С	Ι		С	Yes	Yes		
		Study collective thermal resources	L13	Ι	Ι		Ι	Ι	Ι			С	С		C	Yes	Yes		
		Study collective thermal resource	L14	Ι	Ι		Ι	Ι	Ι			С	C	С	C	Yes	Yes		

Table 3 - Inspiring system layouts of the tiny cluster. The columns are the technologies and the rows the selected layouts. An empty cell indicates that the technology is not present in the layout. Other possible elements in the cell are technologies that can be either individual (I) or collective (C). The shaded elements indicate the technology introduced/changed with respect to previous layouts.

- **MoPED** = Models of positive energy districts
- We INTEGRATE component models for dynamic district energy simulations
- We are users of:
 - OpenModelica v1.21.0
 - Buildings v9.1.1
 - IDEAS v3.0.0

OpenModelica

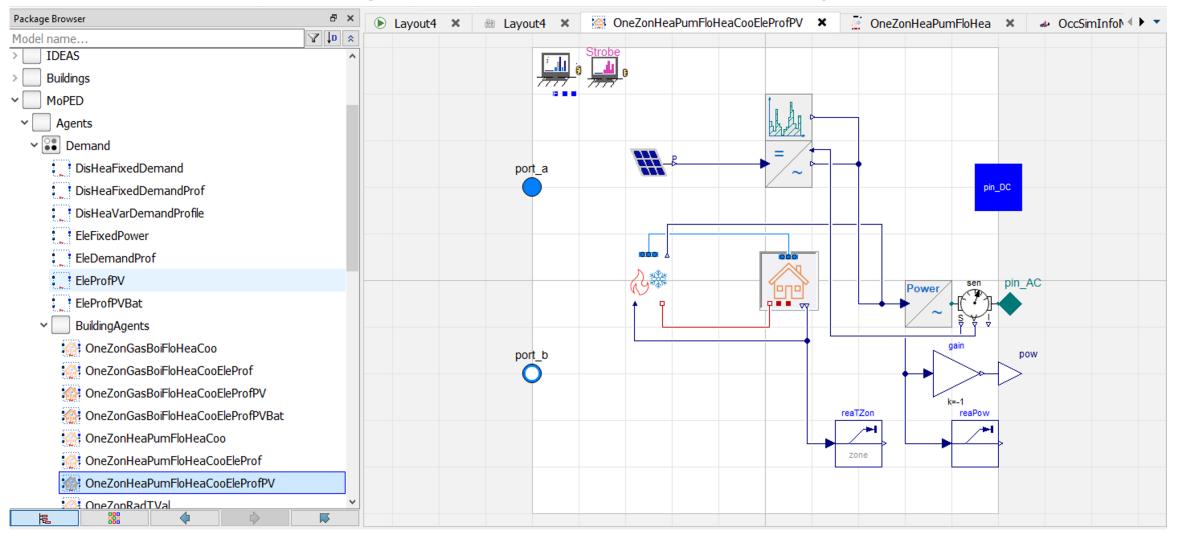
https://gitlab.kuleuven.be/positive-energy-districts/moped

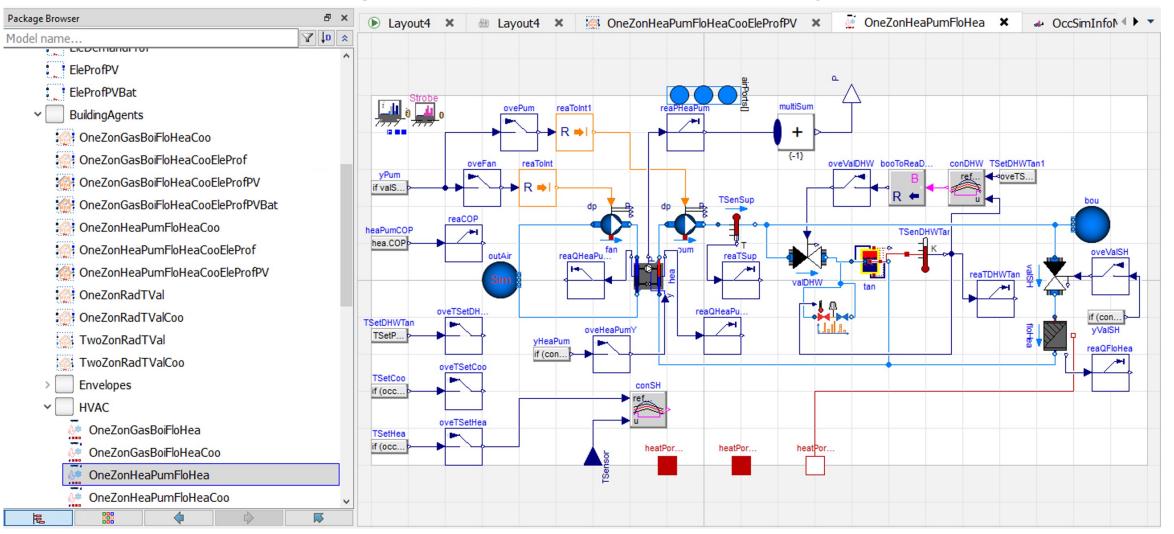
Positive Energy Districts > MoPED				
MoPED (#) Project ID: 7745 (*)		□ ~ tunstar 2 Fork 6]	
ං- 1,670 Commits	🖉 0 Tags 🛛 🗔 355.6 MiB Project Storage			
Library of positive energy district r	nodels.			
pipeline passed		/	/ 🗋 Agents	
Merge branch 'issue127_rer Javier Arroyo authored 5 day	noveReadBlock' into 'main'	() d1857626		🗅 Districts
main ~ moped / + ~		Find file Edit v Clone v		🗅 Electrical
	ey National Labs BSD variant license 🕒 CI/CD configuration 🗍 🗃 Add CHANGELOG		🗅 Networks	
Name	Last commit	Last update		🗅 Resources
🗅 .devcontainer	Update vscode files.	1 week ago		
🗅 .vscode	Use relative paths for launch.json	1 week ago	/	🕒 package.mo
PMOPED Remove read block.		5 days ago		🗅 package.order
🗅 bin	Add test-networks not makefile. Not added yet to .gi	10 months ago		🕒 package.order
♦ .gitignore	Remove fmu source files from version control.	7 months ago		
😝 .gitlab-ci.yml	Roll back to Buildings v9.1.1. to be consistent with in	6 days ago		

T BSD

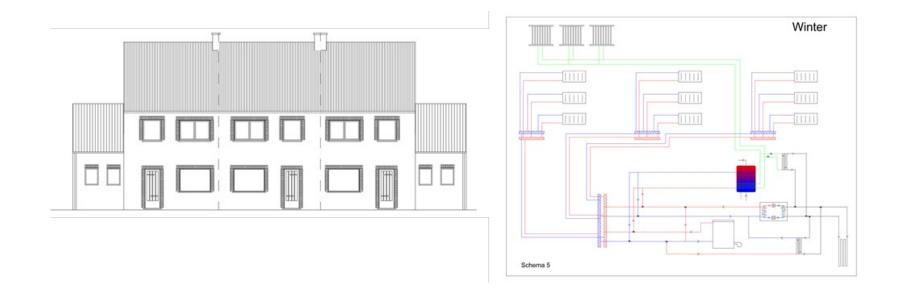
TECHPED Project – The "DOPTEST factory"

https://gitlab.kuleuven.be/positive-energy-districts/moped


wait	test	compile
wait_queue	compile-fmu-layout4RC	C compile-fmu-layout3
	est-demand-job	C compile-fmu-layout4
	est-districts-job	C
	est-electrical-job	
	est-market-job	C
	est-networks-job	
	est-thermal-job	(\mathcal{C})



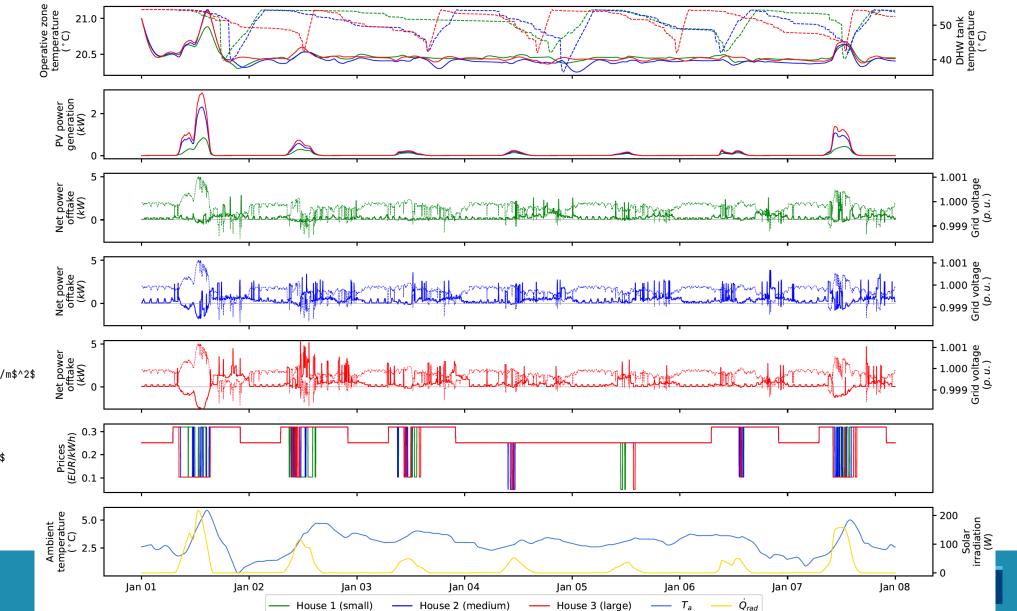
Package Browser	5 ×	Eayout4	× 🔠 Layout4 ×	🦉 OneZonHeaPumFloHea	×	OccSimInfoManager	x	🚳 OneZonHeaPumFloHeaCooEl 🌗 🔻
Model name	* Q							
> Buildings								
V MoPED								
> Agents				+ /				
> 📉 BoundaryConditions				1				
> Control								
✓ Districts					• • • • •			
Hand EleTinyCluster								
DistrictHP								
翻 Layout1								
Layout3								
Layout4								
Layout4RC								
> uSIM22							€	N
> Examples								
> O BaseClasses								
> Electrical								
> Market					ĺ			
> Networks								
> Thermal								
> Resources	~							



The tiny cluster use case: preliminary idea was launched and pre-explored in combined student master thesis work of Ghent University and KU Leuven in 2020-2021-2022*

* Gommers & Meessens & Van Regenmortel, supervised by prof Boydens & Helsen

The tiny cluster use case: simulation example with baseline control


	House 1	House 2	House 3
	(small)	(medium)	(large)
Length $[m]$	10	8	10
Width $[m]$	10	8	10
Height $[m]$	2.8	5.6	5.6
Windows (N-E-S-W [*]) $[m^2]$	3 - 3 - 3 - 5	4 - 6 - 8 - 6	6 - 10 - 10 - 10
Occupancy ****	FTE+PTE	FTE+PTE+SCH	FTE+PTE+SCH+SCH
Installed heating ^{**} - cooling ^{***} power $[kW]$	3 - 1	4 - 1.5	6 - 3.5
PV installation $[kW]$	3.7, W	5.2, S	6.6, S

*N = north, E = east, S = south, W = west

Gas boiler, *Air-to-air heat pump

**** FTE = Full-Time Equivalent, PTE = Part-Time Equivalent, SCH = Schoolgoing child

	Peak	Off-peak
Offtake price (c€/kWh)	31.96	25.12
Injection price (c \in /kWh)	10.35	5.00

KPI RESULTS

cost_tot: 0.13555299559622944 Euro or \\$/m\$^2\$
emis_tot: 0.4927021096008929 KgC02/m\$^2\$
ener_tot: 2.7209278776353214 kWh/m\$^2\$
idis_tot: 0.0 ppmh/zone
pdih_tot: None kW/m\$^2\$
pele_tot: 1.4220232168463612e-05 kW/m\$^2\$
pgas_tot: 0.030373827421699817 kW/m\$^2\$
tdis_tot: 0.08729019482141889 Kh/zone
time_rat: nan s/s

Conclusion

Conclusion

- It is needed a unified framework for testing system integration strategies in districts.
- This work settles the design requirements of DOPTEST.
- A simulation example shows a proof-of-concept of the framework.
- Further work includes the calculation of new district-related KPIs and the implementation of larger clusters

Outlook

Outlook

- Overwrite building and district actuators/setpoints
- Implement price-reactive building agents and <u>overwrite pricing!</u>
- Implement district KPIs → Needs:

To distinguish between agents (which may have zones)
 New enumeration entries in read blocks for KPI calculation

Coordinate with BOPTEST overhaul

 \odot Same repo vs. Fork vs. Separate repo

 \circ Conflicts?

Thank you!

javier.arroyo@kuleuven.be

