IBPSA Project 2: BOPTEST Introduction and Project Status

Expert Meeting Aachen, Germany

October 12, 2023

Co-Operating Agents:

David Blum

Computational Research Scientist/Engineer Building Technology and Urban Systems Division Lawrence Berkeley National Laboratory (LBNL) Email: dhblum@lbl.gov

Lieve Helsen

Professor
Department of Mechanical Engineering
KU Leuven
Email: lieve.helsen@kuleuven.be

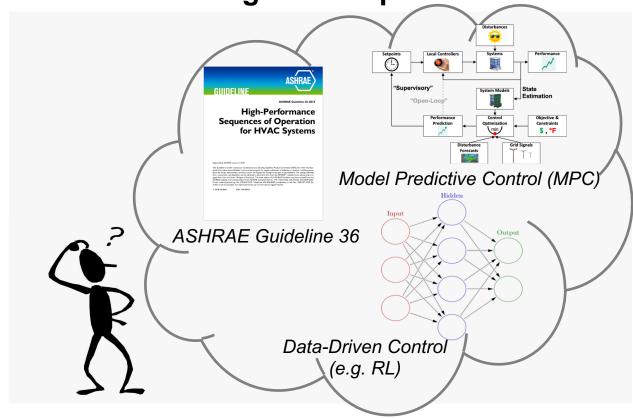
IBPSA Project 2: BOPTEST Introduction and Project Status

Thank you to Fabian Wüllhorst and Professor Dirk Müller

IBPSA Project 2: BOPTEST Introduction and Project Status

- Problem and BOPTEST Concept
- Development History
- Technical Approach Summary
- Status and Usage
- Project 2 Objectives, Tasks, and Registration Stats
- Publication Acknowledgement

Problem

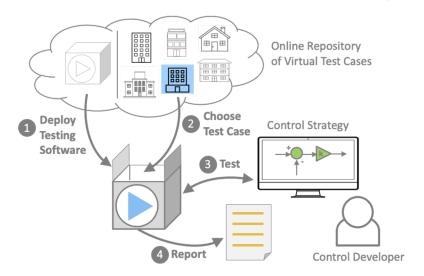

Many new and advanced control strategies hold promise ...

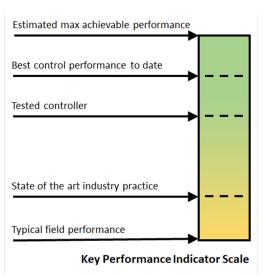
But they all have different requirements for:

- Data
- Modeling
- Computation
- Expertise

How do they <u>compare</u> in terms of:

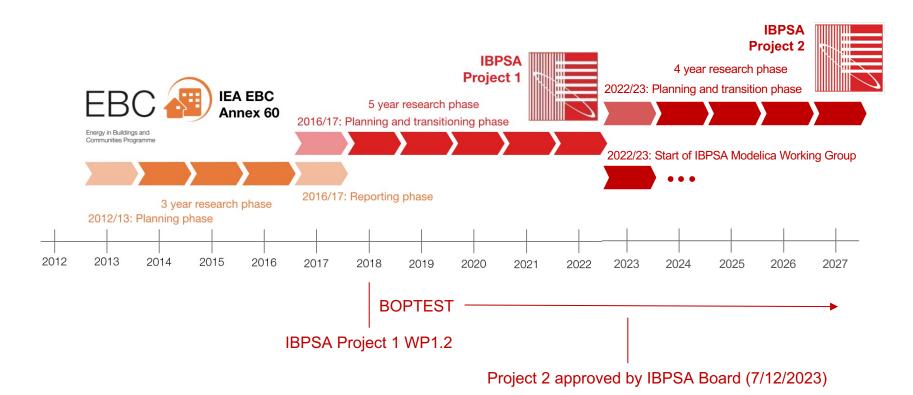
- Providing comfort
- Energy management
- Implementation cost
- Reliability




Concept

Building Optimization Testing Framework (BOPTEST)

A Simulation-Based Controls Testing and Benchmarking Environment


- Deployable software runtime environment: rapidly, repeatably, and at scale
- Control-interactive high-fidelity emulator models with defined boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

History

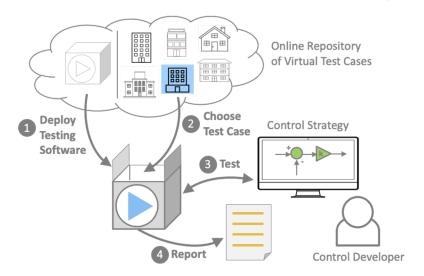
 Extending 10 years of international collaboration on Modelica and FMI-based modeling for building and urban energy system design and operation

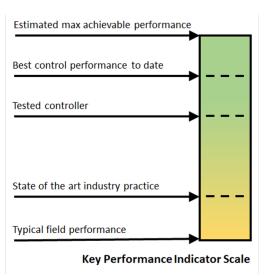
Historical Community Development:

Inctitution

Technical University of Denmark, Denmark

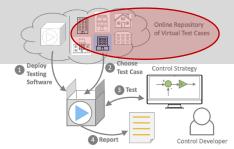
Institution	Team
Arup, Australia, USA, UK	Haico Schepers, Justin Prince, Robert Knight, Raffe Brennan
Builtwins, Belgium	Filip Jorissen
DeltaQ, Belgium	Roel De Coninck, Bart Merema, Iago Cupeiro,
Devetry, USA	Chris Berger, Philip Gonzalez, Amit Kapoor
ENGIE, France	Valentin Gavan
ETH Zurich, Switzerland	Esther Borkowski, Felix Bunning
Hong Kong University of Science and Technology, Hong Kong	Zhe Wang, Wanfu Zheng
Johnson Controls, USA	Erik Paulson (formerly)
KU Leuven, Belgium	Lieve Helsen, Javier Arroyo
Lawrence Berkeley National Laboratory, USA	David Blum, Michael Wetter, Ettore Zanetti
National Renewable Energy Laboratory, USA	Kyle Benne, Nicholas Long, Marjorie Schott, Tim Coleman, Jermy Thomas, Dave Biagioni, Yanfei Li
National University Singapore, Singapore	Sicheng (James) Zhan
Oak Ridge National Laboratory, USA	Yeonjin Bae, Piljae Im, Sen Huang
Pacific Northwest National Laboratory, USA	Yan Chen, Draguna Vrabie, Xing Lu, Jan Drgona, Robert Lutes
Politecnico di Torino, Italy	Davide Fop, Alfonso Capozzoli
Pure Control, France	Gauthier-Clerc Francois
R2M Solutions, Spain	Laura Zabala, Jesus Febres
RWTH Aachen, Germany	Laura Maier, Fabian Wullhorst
SINTEF, Norway	Harald Walnum
Southern Denmark University, Denmark	Krzysztof Arendt, Christian Veje, Tao Yang

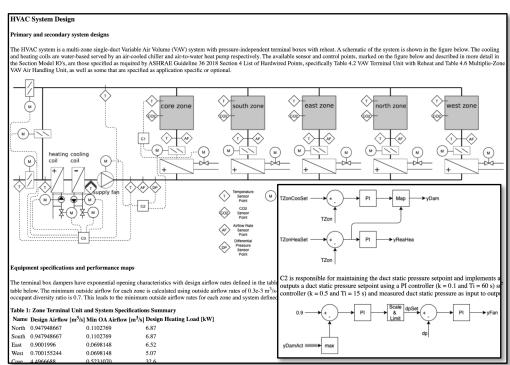

Peder Bacher, Konstantin Filonenko


Toam

Building Optimization Testing Framework (BOPTEST)

A Simulation-Based Controls Testing and Benchmarking Environment

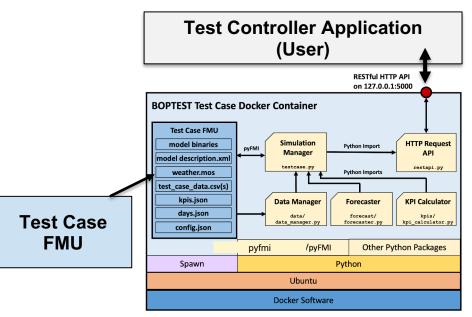

- Deployable software runtime environment: rapidly, repeatably, and at scale
- Control-interactive high-fidelity emulator models with defined boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated



Building Emulators ("Test Cases")

- High-fidelity models with embedded baseline control in Modelica, Spawn, and CDL, exported as FMU
- Overwritable supervisory or localloop control
- All boundary condition data defined (e.g. weather, schedules, electricity prices, carbon emission factors)
- Controlled exposure of sensor and control points
- Documentation and peer review to ensure quality and usability

Example test case documentation snippets


Run-Time Environment

 Rapid, repeatable deployment locally cross-platform or as webservice using Docker

"Native" HTTP RESTful API for test management and controller

interaction

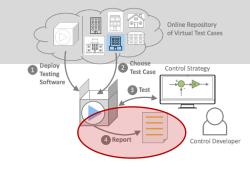
API Endpoint	Description	
GET measurements	Receive available measurement points	
GET inputs	Receive available input points	
PUT scenario	Set test scenario (time period, ele. price)	
PUT initialize	Initialize simulation	
PUT step	Set control step	
GET forecast	Receive forecasts	
POST advance	Advance simulation with control input	
PUT results	Receive historic point trajectory	
GET kpi	Receive KPI values	
POST submit	Submit results to online dashboard	

HTTP RESTful API Summary

Run-time environment architecture (for local deployment)

Online Repository of Virtual Test Cases

Control Strategy


Evaluation Design

- Set of KPIs calculated by framework
- Predefined test scenarios

 (e.g. time period and electricity prices)
- Developing online dashboard for collecting, viewing, and comparing KPI results

Description	Unit
Energy Use	kWh / m ²
Energy Cost	\$ / m ²
Emissions	KgCO2 / m ²
Thermal Discomfort	K.h / zone
IAQ Discomfort	ppm.h / zone
Peak Elec/Gas/District Demand	kW / m ²
Computational Time Ratio	[-]

KPIs calculated by BOPTEST

Framework Status

- Home Page: https://boptest.net/
- BOPTEST v0.5.0 (last week) for core framework software and test cases:

https://ibpsa.github.io/project1-boptest/

- Release highlights:
 - Update Python 3.10, pyfmi 2.11, and CS FMUs
 - Added BACnet interface
- v0.4.0 Downloads (Mar Oct, 2023): 85

https://github.com/NREL/boptest-service

- GitHub: 75 Stars, 54 Forks
- BOPTEST-Service v0.3.0 (last week) with support for BOPTEST v0.5.0:

public web-service API https://api.boptest.net

- supporting BOPTEST v0.4.0 (v0.5.0 any day)
- Gym environment interface with support for v0.4.0: https://github.com/ibpsa/project1-boptest-gym
- BOPTEST Online Results Dashboard: https://dashboard.boptest.net/

Hydronic	Air
Single zone + Radiator	Single zone + FCU
"bestest_hydronic"	"bestest_air"
Single zone + Floor heat and heat	
numn	Single zone + PTII with DY gas furnace

2 zone + FCUs + AHUs with gas boiler, 2 zone + Floor heat and heat pump chiller "twozone apartment hydronic" "multizone commercial simple hydronic"

"bestest hydronic heat pump"

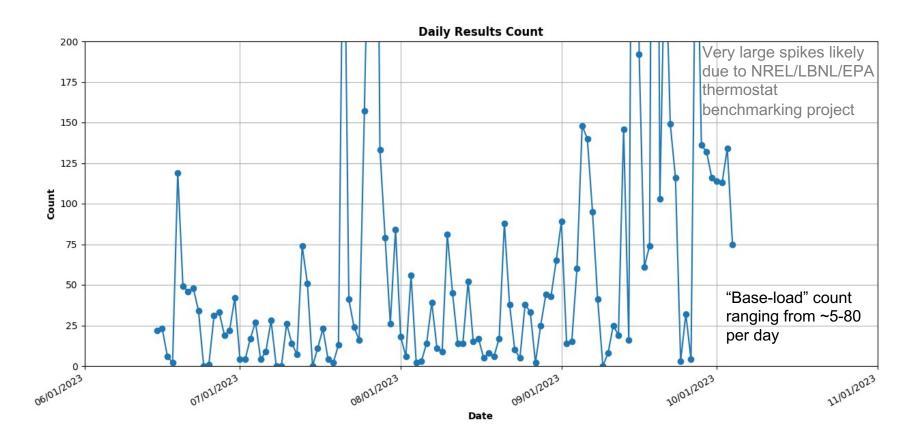
coolina

Single zone class + Radiator, AHU, CO₂ control chiller and heat pump "multizone commercial simple air" "singlezone commercial hydronic" 8-Zone + Radiators, boiler, and split 10-zone + 1 VAV RTU with reheat, DX.

5-Zone + 1 VAV AHU with reheat with

"multizone commercial complex air"

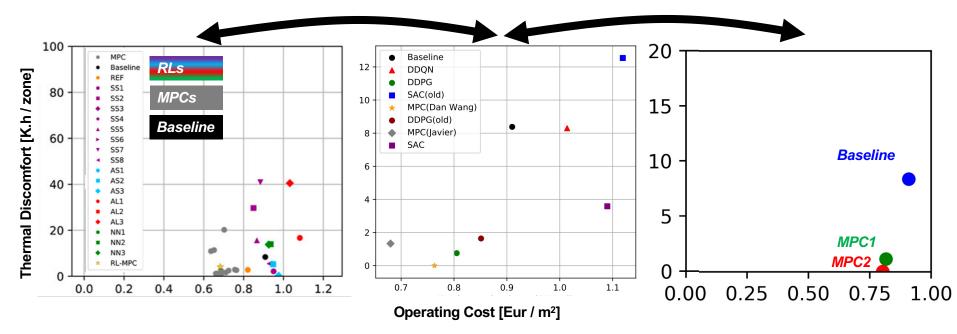
"multizone residential hydronic" "flexible research platform" 15-Zone + 3 VAV AHU with reheat, chiller, boiler


electric heating

Available Implemented, but not yet available

Test case development progress within IBPSA Project

Framework Usage


Public Web-Service Usage (number of results created per day)

Framework Usage

Research Example

Test Case: "bestest_hydronic_heat_pump" Scenario: Peak Heat Day, Highly Dynamic Electricity Price

MPC and RL benchmarking from Arroyo et al. 2022 https://doi.org/10.3389/fbuil.2022.849754.

MPC and RL benchmarking, presented in Annex 81 Subtask B3 progress meeting on 6/23/22. Final study is Wang and Zheng et al. 2023 https://doi.org/10.1016/j.applthermaleng.2023.12 0430.

MPC benchmarking, presented in Annex 81 Subtask B3 plenary meeting on 10/13/22, from H. T. Walnum.

Framework Usage

Industry Examples

DeltaQ (Belgium), **Edo Energy** (USA) Maturing MPC control solutions before deployment

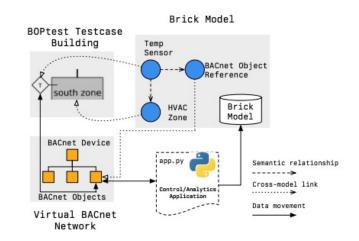
ARUP (Australia, USA, UK)

Exploring usage to provide building owners comparative performance evaluations for advanced controls

EPA EnergyStar (USA)

Exploring usage for improving Smart Thermostat rating system

ADRENALINE (Led by Norway)


Smart Building HVAC Control Challenge open competition

Johnson Controls (USA, 2022-2023)

Improve deployment process of new control products through Semantic models and BACnet

Prototyped workflow for thermostat benchmarking (Benne 2023 https://www.energy.gov/sites/default/files/2023-05/bto-peer-2023-32620-benchmarkingthermostats-nrel-benne.pdf)

Prototyped control application deployment with BACnet, Brick, and BOPTEST (Fierro et al. 2022 https://dl.acm.org/doi/pdf/10.1145/3563357.3564060)

Project 2 Objectives

- Continue open-source (BSD) development of BOPTEST software infrastructure, emulators, and related extensions to meet the growing needs of building and urban energy system controls development and evaluation worldwide.
- Use BOPTEST to evaluate and benchmark advanced control strategies.
- Build an international community around the advancement of controls in building and urban energy systems.

Project 2 Tasks and Leadership

Co-Operating Agents: David Blum, LBNL and Lieve Helsen, KU Leuven - EnergyVille

1. Task 1: Outreach and Community Building

Lead: Javier Arroyo, KU Leuven, Belgium

Activities that encourage, facilitate, and disseminate BOPTEST usage, adoption, and feedback to development. Including workshops, tutorials, website maintenance, usage and case study collection.

2. Task 2: Methods and Infrastructure

Lead: David Blum, LBNL, USA

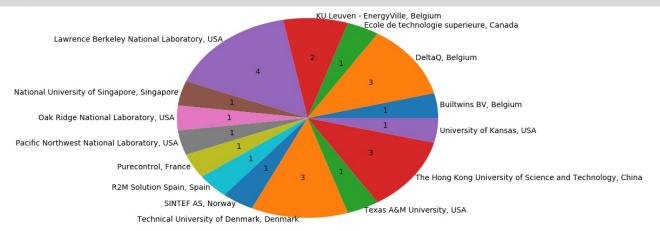
Development and maintenance of core software and closely related extensions. Including architecture, FMU simulation and data management, scenario definition, KPI calculation, forecast delivery, API, dashboard, web-service, and interfaces.

3. Task 3: Test Cases

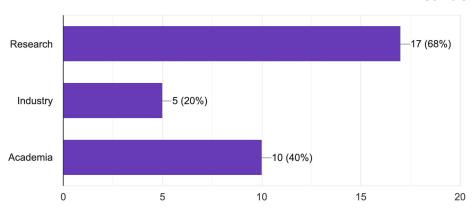
Lead: Ettore Zanetti, LBNL, USA

Development and maintenance of benchmark emulators, so-called "test cases." Continue to utilize the Modelica language and Functional Mockup Interface (FMI) standard, particularly open-source libraries that extend from Modelica IBPSA Library.

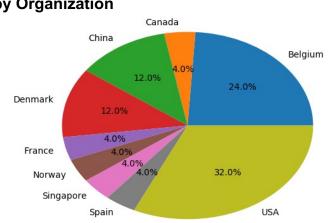
4. Task 4: Controller Testing


Co-leads: Esther Borkowski, ETH Zurich, Switzerland & Zhe Wang, HKUST, Hong Kong

Testing, benchmarking, and comparing control strategies by Project participants.


Project 2 Participation

As of October 6, 2023: (registered using google form)

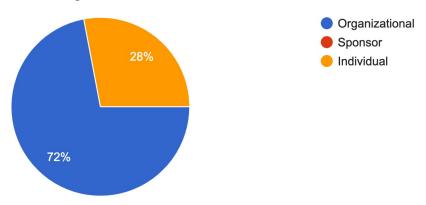

- 25 Registrants
- 16 Organizations
- 9 Countries

Breakdown by Organization

Breakdown by Organization Type

Breakdown by Country

Project 2 Participation

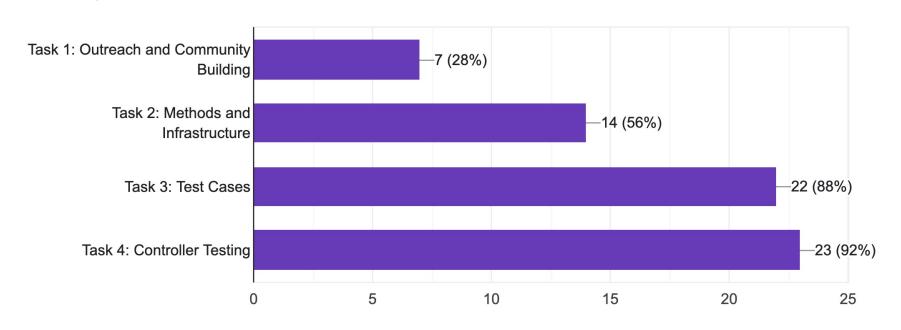

As of October 6, 2023: (registered using google form)

25 Registrants

Organizational: Organizations that commit to contribute a minimum of 6 months FTE per project year using their own funding, contribute to 5-10 virtual meetings annually, and attend two-day semi-annual expert meetings using their own funding.

Individual: Contributors that participate as is custom in other opensource projects without a predetermined level of commitment.

Sponsor: Participants or organizations that fund the Project with cash contribution at US-\$ 5,000 per year. Go to items such as expenses for in-person expert meetings (i.e. rooms, food, A/V, and student travel scholarship) and CI testing.


Project 2 Contributions

As of October 6, 2023:

(registered using google form)

Project Task Contribution Interest(s)

25 responses

Project 2 Publication Acknowledgement

This work emerged from the IBPSA Project 2, an international project conducted under the umbrella of the International Building Performance Simulation Association (IBPSA) to develop and demonstrate the Building Optimization Testing Framework (BOPTEST) for the testing, evaluating, and benchmarking of building and community energy system controls.